PPRIME Forum on Mechanical Design and Mechatronics of Robotics Systems Poitiers, France, 19 November 2014

Applications of Mechanism Design Theories for Surgical Robotics

Chin-Hsing KUO

Assistant Professor Department of Mechanical Engineering Taiwan TECH

ABOUT TAIWAN TECH

HEMAR LAB

TAGWAN TECH National Taiwan University of Science and Technology Feb. 2011 ~ present

Healthcare

ROBOTIC SURGERY

Robotic surgery is a technology that employs robotics to assist surgical procedures.

WHY "SURGICAL ROBOTICS" ?

Precision & Dexterity

(from Intuitive Surgical Co., http://www.intuitivesurgical.com/)

Healthcare

ENGINEERING FOR SURGICAL ROBOTICS

- Medical Imaging
- Registration
- Navigation
- Control
- Robot hardware design (mechanism design)
-

MECHANISM DESIGN

- Motion and force transmission
 - Surgical instruments
 - Surgical holders
 - Surgical robots

CLINICAL AREA OF ROBOTIC SURGERY

9

- Minimally invasive surgery (major)
- Non-minimally invasive surgery

Healthcare

Healthcare

MIS

MINIMALLY INVASIVE SURGICAL ROBOTS

11

MINIMALLY INVASIVE SURGERY

 Minimally Invasive Surgery (MIS) is a class of surgical procedures whereby the surgical operation is done through small incisions.

Advantages:

reduced risk of infection less pain and scarring less bleeding shorter hospitalization decreased recovery time

(from Albany IVF Fertility & Gynecology, http://www.albanyivf.com)

THE FIRST SPECIAL-PURPOSE MIS ROBOT

Robot Name: Probot Developer: Imperial College London, UK Clinical trail: **1991**

COMMERCIAL MIS ROBOTS

13

TAGWAN

National Taiwan University of Science and Technology

AESOP (1991) Computer Motion

CH National Taiwan University of Science and Technology

Zeus (1995) Computer Motion

14

da Vinci (1999) Intuitive Surgical

MIS ROBOTS WORLDWIDE

- Business: Intuitive Surgical (da Vinci)
- Research:
 - ✓ USA: JHU, MIT, Stanford, Harvard, UMD, CMU, UW-Seattle, etc.
 - ✓ UK: Imperial College London, King's College London, etc.
 - ✓ Europe: Karlsruhe Research Center (Germany), DLR (Germany), IIT (Italy), Scuola Superiore Sant' Anna (Italy), LIRMM (France), PPRIME (France), etc.
 - ✓ Asia: Tokyo Univ. (Japan), Tianjin Univ. (China), Natl. Central Univ. (Taiwan), Taiwan Tech (Taiwan), etc.

and many others....

Healthcare

16

MECHANISM DESIGN

Special kinematic motion demand

- Limited transmission space
- Immersive human interaction
- Dextrous manipulation
- ✤ Safety issues

SPECIAL KINEMATICS: REMOTE CENTER-OF-MOTION

17

LARS robot, Johns Hopkins Univ., 2009

Healthcare

Healthcare

- 1. 4-DOF
- 2. Pivoting motion
- 3. Extracorporeal workspace
- 4. Decoupled motion

IMPLEMENTATION OF RCM MECHANISMS IN MIS ROBOTS

NON-MECHANICAL RCM

(Dombre et al., 2004, Proc. MICCAI)

• Require very fine control

A FULLY-DECOUPLED MIS ROBOT

21

LIMITED TRANSMISSION SPACE

IMMERSIVE HUMAN INTERACTION

The surgical instruments need to interact (touch or insert into the body) with the patient immensely, so the mechanisms will have special requirements on **lubrication**, **sterilization**, **instrumentation**,..., etc.

DEXTEROUS MANIPULATION

SAFETY ISSUES

- Workspace (Small working space vs. large mobility)
- Collision avoidance (robot ⇔ surgeon > assistants, & patient)
- **Emergency control** (e.g., emergency stop)
- Back-drivability

Mechanism Design for Laparoscopic Holders

LAPAROSCOPE HOLDERS

29

Active type

Passive type

da Vinci arm

itional Taiwan University of ience and Technology

ASSISTO holder

ACTIVE VS. PASSIVE HOLDERS

Property	Active type	Passive type
Control Precision	Better	Not good
Control Institution	Not good	More intutive
Weight	Heavy	Light
Price	Costly	Budget
National Taiwan University of Science and Technology	31	ji H

THE PROBLEMS

- Bimanual operation
- Mechanical safety

DESIGN GOALS

- * Passive design: No actuation unit
- * Decoupled manipulation: Positioning and orientating
- * Gravity-free: No mechanical lock required
- * Safety: Remote center-of-motion provided

STATICALLY BALANCING DESIGN: FUNDAMENTAL CONCEPT

Statical balancing design for the orientating mechanism

Statical balancing: Design result

Positioning mechanism

Orientating mechanism

37

Healthcare

Novel Passive Statically Balancing Laparoscope Holder

HeMaR Lab @ Taiwan tech

TAGWAN

ECH National Taiwan University of Science and Technology

Mechanism Design for Craniotomy Robots

CRANIOTOMY

39

Frontal Craniotomy

Neurosurgery Education and Training School

All India Institute of Medical Sciences New Delhi, India.

EXISTING CRANIOTOMY ROBOTS

Karlsruhe Univ., Germany

Collision Protection (CP) Force-/Torque Sensor (FTS) Robot Rigid-Body Milling Cutter Patient Rigid-Body

KUKA LWR

Lung-Hwa Univ., Taiwan

LR Mate 200iB

Healthcare

The problems

- All robots are industrial serial robot, i.e., not specifically designed for craniotomy application.
- Due to the serial structure, the rigidity is not convinced.
- The robots provide redundant DOFs—the craniotomy operation only requests 3 DOFs

43

Healthcare Mechanisms and Robotics Lab

CONCLUSIONS

- Mechanism design is vital for surgical robots
- There are still many challenges of mechanism design in surgical applications
- Safety is the uppermost requirement
- Talk to the surgeons and understand their needs

ACKNOWLEDGEMENT

The 14th IFToMM World Congress

Date : Oct. 25-30, 2015 / Venue: Taipei International Convention Center, Taiwan

Home Page Welcome Message Organizing Committee Congress Information Technical Program EC Meeting Social Events Paper Information Registration Young Delegates Program Come to Taiwan Accommodation Exhibition & Sponsorship Related Links Contact Us

